On Petersson products of not necessarily cuspidal modular forms
نویسندگان
چکیده
منابع مشابه
On Dirichlet Series and Petersson Products for Siegel Modular Forms
— We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight k > n/2 has meromorphic continuation to C. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight k > n/2 may be expressed in terms of the residue at s = k of the associated Dirichlet series....
متن کاملOn the transcendence of certain Petersson inner products
We show that for all normalized Hecke eigenforms $f$ with weight one and of CM type, the number $(f,f)$ where $(cdot, cdot )$ denotes the Petersson inner product, is a linear form in logarithms and hence transcendental.
متن کاملModular Forms on
Let k 2 Z and let SL 2 (Z) denote the special linear group SL 2 (Z) = a b c d : a; b; c; d 2 Z and ad bc = 1 : A modular form of weight k is an analytic function f de…ned on the complex upper half plane H = fz 2 C : Im(z) > 0g that transforms under the action of SL 2 (Z) according to the relation [1] f az + b cz + d = (cz + d) k f (z) for all a b c d 2 SL 2 (Z)
متن کاملMultilinear forms which are products of linear forms
The conditions under which, multilinear forms (the symmetric case and the non symmetric case),can be written as a product of linear forms, are considered. Also we generalize a result due to S.Kurepa for 2n-functionals in a group G.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2007
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2006.03.003