On Petersson products of not necessarily cuspidal modular forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Dirichlet Series and Petersson Products for Siegel Modular Forms

— We prove that the Dirichlet series of Rankin–Selberg type associated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n and weight k > n/2 has meromorphic continuation to C. Moreover, we show that the Petersson product of any pair of square–integrable modular forms of weight k > n/2 may be expressed in terms of the residue at s = k of the associated Dirichlet series....

متن کامل

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

Modular Forms on

Let k 2 Z and let SL 2 (Z) denote the special linear group SL 2 (Z) = a b c d : a; b; c; d 2 Z and ad bc = 1 : A modular form of weight k is an analytic function f de…ned on the complex upper half plane H = fz 2 C : Im(z) > 0g that transforms under the action of SL 2 (Z) according to the relation [1] f az + b cz + d = (cz + d) k f (z) for all a b c d 2 SL 2 (Z)

متن کامل

Multilinear forms which are products of linear forms

The conditions under which, multilinear forms (the symmetric case and the non symmetric case),can be written as a product of linear forms, are considered. Also we generalize a result due to S.Kurepa for 2n-functionals in a group G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2007

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2006.03.003